Skip to content

Models

ImageData

Reader methods returning image data (tile, part, feature and preview) return a data holding class: rio_tiler.models.ImageData.

This class has helper methods like render which forward internal data and mask to rio_tiler.utils.render method, but also helps preserving geospatial information (bounds and crs) about the data.

Attributes

  • array: image array (numpy.ma.MaskedArray)
  • assets: assets list used to create the data array (list, optional)
  • bounds: bounds of the data (rasterio.coords.BoundingBox, optional)
  • crs: coordinate reference system for the data (rasterio.crs.CRS, optional)
  • metadata: additional metadata (dict, optional)
  • band_names: image band's names
  • dataset_statistics: Dataset's min/max values (list of (min,max), optional)
  • cutline_mask: array representing the mask for feature methods
import numpy
from rio_tiler.models import ImageData

d = numpy.zeros((3, 256, 256))
m = numpy.zeros((3, 256, 256), dtype="bool")

data = numpy.ma.MaskedArray(d, mask=m)

print(ImageData(data))
>>> ImageData(
    array=masked_array(...),
    assets=None,
    bounds=None,
    crs=None,
    metadata={},
    band_names=['b1', 'b2', 'b3'],
    dataset_statistics=None,
    cutline_mask=array(),
)

Properties

  • width: number of column in the data array (int)
  • height: number of row in the data array (int)
  • count: number of bands in the data array (int)
  • transform: Affine transform created from the bounds and crs (affine.Affine)
  • data: Return data part of the masked array.
  • mask: Return the mask part in form of rasterio dataset mask.

Methods

  • data_as_image(): Return the data array reshaped into an image processing/visualization software friendly order

    import numpy
    from rio_tiler.models import ImageData
    
    d = numpy.zeros((3, 256, 256))
    m = numpy.zeros((3, 256, 256), dtype="bool")
    data = numpy.ma.MaskedArray(d, mask=m)
    
    img = ImageData(data)
    print(img.data.shape)
    >>> (3, 256, 256)
    
    image = img.data_as_image()
    print(image.shape)
    >>> (256, 256, 3)
    
  • clip(): Clip data and mask to a bbox (in the ImageData CRS).

    New in version 4.0.0

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.zeros((3, 1024, 1024), dtype="uint8")
    img = ImageData(data, crs="epsg:4326", bounds=(-180, -90, 180, 90))
    
    img_c = img.clip((-100, -50, 100, 50))
    assert img_c.count == 3
    assert img_c.bounds == (-100, -50, 100, 50)
    
  • resize(): Resize data and mask.

    New in version 4.0.0

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.zeros((3, 1024, 1024), dtype="uint8")
    img = ImageData(data)
    
    img_r = img.resize(256, 256)
    assert img_r.count == 3
    assert img_r.width == 256
    assert img_r.height == 256
    
  • post_process(): Apply rescaling or/and color-operations formula to the data array. Returns a new ImageData instance.

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.random.randint(0, 3000, (3, 256, 256))
    img = ImageData(data)
    
    print(img.data.dtype)
    >>> 'int64'
    
    print(img.data.max())
    >>> 2999
    
    # rescale the data from 0 -> 3000 to 0 -> 255
    # by default rio-tiler will apply the same `in_range` for all the bands
    image = img.post_process(in_range=((0, 3000),))
    
    # or provide range for each bands
    image = img.post_process(in_range=((0, 3000), (0, 1000), (0, 2000)))
    
    assert isinstance(image, ImageData)
    
    print(image.data.dtype)
    >>> 'uint8'
    
    print(image.data.max())
    >>> 254
    
    # rescale and apply color-operations formula
    image = img.post_process(
        in_range=((0, 3000),),
        color_formula="Gamma RGB 3.1",
    )
    assert isinstance(image, ImageData)
    
  • statistics(): Return statistics from ImageData.

    New in version 4.1.7

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.zeros((1, 256, 256), dtype="uint8")
    data[0, 0:10, 0:10] = 0
    data[0, 10:11, 10:11] = 100
    img = ImageData(data)
    stats = img.statistics(categorical=True)
    
    print(stats["b1"].min)
    >>> 0
    
    print(stats["b1"].max)
    >>> 100
    
    print(stats["b1"].majority)
    >>> 0
    
    print(stats["b1"].minority)
    >>> 100
    
    print(stats["b1"].unique)
    >>> 2.0
    
  • rescale(): linear rescaling of the data in place

    New in version 3.1.5

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.random.randint(0, 3000, (3, 256, 256))
    img = ImageData(data)
    
    print(img.data.dtype)
    >>> 'int64'
    
    print(img.data.max())
    >>> 2999
    
    # rescale and apply color-operations formula
    img.rescale(in_range=((0, 3000),),)
    print(img.data.max())
    >>> 254
    
    print(img.data.dtype)
    >>> 'uint8'
    
  • apply_color_formula(): Apply color-operations's color formula in place

    New in version 3.1.5

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.random.randint(0, 16000, (3, 256, 256)).astype("uint16")
    img = ImageData(data)
    
    print(img.data.dtype)
    >>> 'uint16'
    
    img.apply_color_formula("Gamma RGB 3.5")
    print(img.data.dtype)
    >>> 'uint8'
    
    print(img.data.max())
    >>> 170
    
  • apply_colormap(): Apply colormap to the image data

    New in version 4.1.6

    import numpy
    from rio_tiler.models import ImageData
    
    cm = {0: (0, 0, 0, 255), 1: (255, 255, 255, 255)}
    im = ImageData(numpy.zeros((1, 256, 256), dtype="uint8")).apply_colormap(cm)
    assert im.data.shape == (3, 256, 256)
    assert im.data[:, 0, 0].tolist() == [0, 0, 0]
    assert im.mask[0, 0] == 255
    assert im.mask.all()
    
  • apply_expression(): Apply band math expression

    New in version 4.0

    import numpy
    from rio_tiler.models import ImageData
    
    data = numpy.random.randint(0, 3000, (3, 256, 256))
    
    img = ImageData(data)
    print(img.band_names)
    >>> ["b1", "b2", "b3"]  # Defaults
    
    ratio = img.apply_expression("b1/b2")  # Returns a new ImageData object
    assert isinstance(ratio, ImageData)
    
    print(ratio.band_names)
    >>> ["b1/b2"]
    
    print(ratio.data.shape)
    >>> (1, 256, 256)
    
  • render(): Render the data/mask to an image buffer (forward data and mask to rio_tiler.utils.render).

    import numpy
    from rasterio.io import MemoryFile
    from rio_tiler.models import ImageData
    
    def get_meta(content):
        with MemoryFile(content) as mem:
            with mem.open() as dst:
                return dst.meta
    
    data = numpy.zeros((3, 256, 256), dtype="uint8")
    
    img = ImageData(data)
    
    # create a PNG image
    buf = img.render(img_format="png")
    print(get_meta(buf))
    >>> {
        'driver': 'PNG',
        'dtype': 'uint8',
        'nodata': None,
        'width': 256,
        'height': 256,
        'count': 4,
        'crs': None,
        'transform': Affine(1.0, 0.0, 0.0, 0.0, 1.0, 0.0)
    }
    
    # create a JPEG image
    buf = img.render(img_format="jpeg")
    print(get_meta(buf))
    >>> {
        'driver': 'JPEG',
        'dtype': 'uint8',
        'nodata': None,
        'width': 256,
        'height': 256,
        'count': 3,
        'crs': None,
        'transform': Affine(1.0, 0.0, 0.0, 0.0, 1.0, 0.0)
    }
    

Note: Starting with rio-tiler==2.1, when the output datatype is not valid for a driver (e.g float for PNG), rio-tiler will automatically rescale the data using the min/max value for the datatype (ref: cogeotiff/rio-tiler!391).

PointData

New in version 4.0

Attributes

  • array: image array (numpy.ma.MaskedArray)
  • assets: assets list used to create the data array (list, optional)
  • coordinates: Coordinates of the point (Tuple[float, float], optional)
  • crs: coordinate reference system for the data (rasterio.crs.CRS, optional)
  • metadata: additional metadata (dict, optional)
  • band_names: values band's names
import numpy
from rio_tiler.models import PointData

d = numpy.zeros((3))
m = numpy.zeros((1), dtype="bool")

data = numpy.ma.MaskedArray(d, mask=m)

print(PointData(data))
>>> PointData(
    array=masked_array(data=[0.0, 0.0, 0.0], mask=[False, False, False], fill_value=1e+20),
    band_names=['b1', 'b2', 'b3'],
    coordinates=None,
    crs=None,
    assets=None,
    metadata={},
)
)

Properties

  • count: number of bands in the data array (int)
  • data: Return data part of the masked array.
  • mask: Return the mask part in form of rasterio dataset mask.

Methods

  • as_masked(): Return the data array as a numpy.ma.MaskedArray deprecated
import numpy
from rio_tiler.models import PointData

data = numpy.zeros((3))
masked = PointData(data).as_masked()
print(type(masked))
>>> numpy.ma.core.MaskedArray
  • apply_expression(): Apply band math expression
import numpy
from rio_tiler.models import PointData

data = numpy.random.randint(0, 3000, (3))

pts = PointData(data)
print(pts.band_names)
>>> ["b1", "b2", "b3"]  # Defaults

ratio = pts.apply_expression("b1/b2")  # Returns a new PointData object
assert isinstance(ratio, PointData)

print(ratio.band_names)
>>> ["b1/b2"]

print(ratio.count)
>>> 1

Others

Readers methods returning metadata like results (info() and statistics()) return pydantic models to make sure the values are valids.

Info

from rio_tiler.io import Reader
from rio_tiler.models import Info

# Schema
print(Info.schema())
>>> {
    "title": "Info",
    "description": "Dataset Info.",
    "type": "object",
    "properties": {
        "bounds": {
            "title": "Bounds",
            "type": "array",
            "items": [
                {
                    "title": "Left"
                },
                {
                    "title": "Bottom"
                },
                {
                    "title": "Right"
                },
                {
                    "title": "Top"
                }
            ]
        },
        "minzoom": {
            "title": "Minzoom",
            "type": "integer"
        },
        "maxzoom": {
            "title": "Maxzoom",
            "type": "integer"
        },
        "band_metadata": {
            "title": "Band Metadata",
            "type": "array",
            "items": {
                "type": "array",
                "items": [
                    {
                        "type": "string"
                    },
                    {
                        "type": "object"
                    }
                ]
            }
        },
        "band_descriptions": {
            "title": "Band Descriptions",
            "type": "array",
            "items": {
                "type": "array",
                "items": [
                    {
                        "type": "string"
                    },
                    {
                        "type": "string"
                    }
                ]
            }
        },
        "dtype": {
            "title": "Dtype",
            "type": "string"
        },
        "nodata_type": {
            "$ref": "#/definitions/NodataTypes"
        },
        "colorinterp": {
            "title": "Colorinterp",
            "type": "array",
            "items": {
                "type": "string"
            }
        },
        "scale": {
            "title": "Scale",
            "type": "number"
        },
        "offset": {
            "title": "Offset",
            "type": "number"
        },
        "colormap": {
            "title": "Colormap",
            "type": "object",
            "additionalProperties": {
                "type": "array",
                "items": [
                    {
                        "type": "integer"
                    },
                    {
                        "type": "integer"
                    },
                    {
                        "type": "integer"
                    },
                    {
                        "type": "integer"
                    }
                ]
            }
        }
    },
    "required": [
        "bounds",
        "minzoom",
        "maxzoom",
        "band_metadata",
        "band_descriptions",
        "dtype",
        "nodata_type"
    ],
    "definitions": {
        "NodataTypes": {
            "title": "NodataTypes",
            "description": "rio-tiler Nodata types.",
            "enum": [
                "Alpha",
                "Mask",
                "Internal",
                "Nodata",
                "None"
            ],
            "type": "string"
        }
    }
}

# Example
with Reader(
  "http://oin-hotosm.s3.amazonaws.com/5a95f32c2553e6000ce5ad2e/0/10edab38-1bdd-4c06-b83d-6e10ac532b7d.tif"
) as src:
    info = src.info()

print(info["nodata_type"])
>>> "None"

print(info.nodata_type)
>>> "None"

print(info.json(exclude_none=True))
>>> {
    'bounds': [-61.287001876638215, 15.537756794450583, -61.27877967704677, 15.542486503997608],
    'minzoom': 16,
    'maxzoom': 22,
    'band_metadata': [('b1', {}), ('b2', {}), ('b3', {})],
    'band_descriptions': [('b1', ''), ('b2', ''), ('b3', '')],
    'dtype': 'uint8',
    'nodata_type': 'None',
    'colorinterp': ['red', 'green', 'blue'],
    'count': 3,
    'driver': 'GTiff',
    'height': 11666,
    'overviews': [2, 4, 8, 16, 32, 64],
    'width': 19836
}

Note: starting with rio-tiler>=2.0.8, additional metadata can be set (e.g. driver, count, width, height, overviews in Reader.info())

BandStatistics

from rio_tiler.io import Reader
from rio_tiler.models import BandStatistics

# Schema
print(BandStatistics.schema())
>>> {
    "title": "BandStatistics",
    "description": "Image statistics",
    "type": "object",
    "properties": {
        "min": {
            "title": "Min",
            "type": "number"
        },
        "max": {
            "title": "Max",
            "type": "number"
        },
        "mean": {
            "title": "Mean",
            "type": "number"
        },
        "count": {
            "title": "Count",
            "type": "number"
        },
        "sum": {
            "title": "Sum",
            "type": "number"
        },
        "std": {
            "title": "Std",
            "type": "number"
        },
        "median": {
            "title": "Median",
            "type": "number"
        },
        "majority": {
            "title": "Majority",
            "type": "number"
        },
        "minority": {
            "title": "Minority",
            "type": "number"
        },
        "unique": {
            "title": "Unique",
            "type": "number"
        },
        "histogram": {
            "title": "Histogram",
            "type": "array",
            "items": {
                "type": "array",
                "items": {
                    "anyOf": [
                        {
                            "type": "number"
                        },
                        {
                            "type": "integer"
                        }
                    ]
                }
            }
        },
        "valid_percent": {
            "title": "Valid Percent",
            "type": "number"
        },
        "masked_pixels": {
            "title": "Masked Pixels",
            "type": "number"
        },
        "valid_pixels": {
            "title": "Valid Pixels",
            "type": "number"
        }
    },
    "required": [
        "min",
        "max",
        "mean",
        "count",
        "sum",
        "std",
        "median",
        "majority",
        "minority",
        "unique",
        "histogram",
        "valid_percent",
        "masked_pixels",
        "valid_pixels"
    ]
}

# Example
with Reader(
  "http://oin-hotosm.s3.amazonaws.com/5a95f32c2553e6000ce5ad2e/0/10edab38-1bdd-4c06-b83d-6e10ac532b7d.tif"
) as src:
    stats = src.statistics()
    assert isinstance(stats["b1"], BandStatistics)

print(stats["b1"]["min"])
>>> 0.0

print(stats["b1"].min)
>>> 0.0

print(stats["b1"].json(exclude_none=True))
>>> {
    "min": 0,
    "max": 255,
    "mean": 93.16424226523633,
    "count": 617472,
    "sum": 57526311,
    "std": 59.261322978176324,
    "median": 94,
    "majority": 0,
    "minority": 253,
    "unique": 256,
    "histogram": [
        [
            100540,
            43602,
            87476,
            112587,
            107599,
            73453,
            43623,
            21971,
            15006,
            11615
        ],
        [
            0,
            25.5,
            51,
            76.5,
            102,
            127.5,
            153,
            178.5,
            204,
            229.5,
            255
        ]
    ],
    "valid_percent": 100,
    "masked_pixels": 0,
    "valid_pixels": 617472,
    "percentile_2": 0,
    "percentile_98": 228
}

Attrs - Classes Without Boilerplate https://www.attrs.org/en/stable/

Pydantic - Define how data should be in pure, canonical python https://pydantic-docs.helpmanual.io